
RcppArmadillo: Accelerating R with High-Performance C++ Linear Algebra

Dirk Eddelbuettel and Conrad Sanderson

Computational Statistics & Data Analysis, Volume 71, March 2014, pp. 1054–1063
http://dx.doi.org/10.1016/j.csda.2013.02.005

Abstract

The R statistical environment and language has demonstrated particular strengths for interactive
development of statistical algorithms, as well as data modelling and visualisation. Its current
implementation has an interpreter at its core which may result in a performance penalty in comparison
to directly executing user algorithms in the native machine code of the host CPU. In contrast, the
C++ language has no built-in visualisation capabilities, handling of linear algebra or even basic
statistical algorithms; however, user programs are converted to high-performance machine code, ahead
of execution. A new method avoids possible speed penalties in R by using the Rcpp extension package in
conjunction with the Armadillo C++ matrix library. In addition to the inherent performance advantages
of compiled code, Armadillo provides an easy-to-use template-based meta-programming framework,
allowing the automatic pooling of several linear algebra operations into one, which in turn can lead to
further speedups. With the aid of Rcpp and Armadillo, conversion of linear algebra centred algorithms
from R to C++ becomes straightforward. The algorithms retain the overall structure as well as
readability, all while maintaining a bidirectional link with the host R environment. Empirical timing
comparisons of R and C++ implementations of a Kalman filtering algorithm indicate a speedup of several
orders of magnitude.

http://dx.doi.org/10.1016/j.csda.2013.02.005

RcppArmadillo: Accelerating R
with High-Performance C++ Linear Algebra

Dirk Eddelbuettela,∗, Conrad Sandersonb,c

aDebian Project, http: // www. debian. org
bNICTA, PO Box 6020, St Lucia, QLD 4067, Australia

cQueensland University of Technology (QUT), Brisbane, QLD 4000, Australia

Abstract

The R statistical environment and language has demonstrated particular strengths for
interactive development of statistical algorithms, as well as data modelling and visu-
alisation. Its current implementation has an interpreter at its core which may result
in a performance penalty in comparison to directly executing user algorithms in the
native machine code of the host CPU. In contrast, the C++ language has no built-in vi-
sualisation capabilities, handling of linear algebra or even basic statistical algorithms;
however, user programs are converted to high-performance machine code, ahead of
execution. A new method avoids possible speed penalties in R by using the Rcpp ex-
tension package in conjunction with the Armadillo C++ matrix library. In addition to
the inherent performance advantages of compiled code, Armadillo provides an easy-to-
use template-based meta-programming framework, allowing the automatic pooling of
several linear algebra operations into one, which in turn can lead to further speedups.
With the aid of Rcpp and Armadillo, conversion of linear algebra centered algorithms
from R to C++ becomes straightforward. The algorithms retains the overall structure
as well as readability, all while maintaining a bidirectional link with the host R envi-
ronment. Empirical timing comparisons of R and C++ implementations of a Kalman
filtering algorithm indicate a speedup of several orders of magnitude.

Keywords: Software, R, C++, linear algebra

1. Overview

Linear algebra is a cornerstone of statistical computing and statistical software sys-
tems. Various matrix decompositions, linear program solvers, and eigenvalue / eigen-
vector computations are key to many estimation and analysis routines. As generally
useful procedures, these are often abstracted and regrouped in specific libraries for
linear algebra which statistical programmers have provided for various programming
languages and environments.

∗Corresponding author. Email: edd@debian.org. Postal address: 711 Monroe Avenue, River Forest,
IL 60305, USA. The RcppArmadillo package is available with the electronic version of this article, as well
as via every CRAN mirror.

Preprint submitted to Computational Statistics and Data Analysis February 3, 2013

One such environment and statistical programming language is R (R Development
Core Team, 2012). It has become a tool of choice for data analysis and applied statistics
(Morandat et al., 2012). While R has particular strengths at fast prototyping and easy
visualisation of data, its implementation has an interpreter at its core. In comparison
to running user algorithms in the native machine code of the host CPU, the use of
an interpreter often results in a performance penalty for non-trivial algorithms that
perform elaborate data manipulation (Morandat et al., 2012). With user algorithms
becoming more complex and increasing in functionality, as well as with data sets which
continue to increase in size, the issue of execution speed becomes more important.

The C++ language offers a complementary set of attributes: while it has no built-in
visualisation capabilities nor handling of linear algebra or statistical methods, user pro-
grams are converted to high-performance machine code ahead of execution. It is also
inherently flexible. One key feature is operator overloading which allows the program-
mer to define custom behaviour for mathematical operators such as +, −, ∗ (Meyers,
2005). C++ also provides language constructs known as templates, originally intended
to easily allow the reuse of algorithms for various object types, and later extended to a
programming construct in its own right called template meta-programming (Vandevo-
orde and Josuttis, 2002; Abrahams and Gurtovoy, 2004)

Operator overloading allows mathematical operations to be extended to user-defined
objects, such as matrices. This in turn allows linear algebra expressions to be written
in a more natural manner (eg. X = 0.1 ∗ A + 0.2 ∗ B), rather than the far less readable
traditional function call syntax, eg. X = add(multiply(0.1, A),multiply(0.2, B)).

Template meta-programming is the process of inducing the C++ compiler to exe-
cute, at compile time, Turing-complete programs written in a somewhat opaque subset
of the C++ language (Vandevoorde and Josuttis, 2002; Abrahams and Gurtovoy, 2004).
These meta-programs in effect generate further C++ code (often specialised for partic-
ular object types), which is finally converted into machine code.

An early and influential example of exploiting both meta-programming and over-
loading of mathematical operators was provided by the Blitz++ library (Veldhuizen,
1998), targeted for efficient processing of arrays. Blitz++ employed elaborate meta-
programming to avoid the generation of temporary array objects during the evaluation
of mathematical expressions. However, the library’s capabilities and usage were held
back at the time by the limited availability of compilers correctly implementing all the
necessary features and nuances of the C++ language.

We present a new method of avoiding the speed penalty in R by using the Rcpp
extension package (Eddelbuettel and François, 2011, 2012; Eddelbuettel, 2013) in con-
junction with the Armadillo C++ linear algebra library (Sanderson, 2010). Similar to
Blitz++, Armadillo uses operator overloading and various template meta-programming
techniques to attain efficiency. However, it has been written to target modern C++ com-
pilers as well as providing a much larger set of linear algebra operations than Blitz++.
R programs augmented to use Armadillo retain the overall structure as well as read-
ability, all while retaining a bidirectional link with the host R environment.

Section 2 provides an overview of Armadillo, followed by its integration with the
Rcpp extension package. Section 4 shows an example of an R program and its conver-
sion to C++ via Rcpp and Armadillo. Section 5 discusses an empirical timing compar-
ison between the R and C++ versions before Section 6 concludes.

2

2. Armadillo

The Armadillo C++ library provides vector, matrix and cube types (supporting in-
teger, floating point and complex numbers) as well as a subset of trigonometric and
statistics functions (Sanderson, 2010). In addition to elementary operations such as
addition and matrix multiplication, various matrix factorisations and submatrix manip-
ulation operations are provided. The corresponding application programming interface
(syntax) enables the programmer to write code which is both concise and easy-to-read
to those familiar with scripting languages such as Matlab and R. Table 1 lists a few
common Armadillo functions.

Matrix multiplication and factorisations are accomplished through integration with
the underlying operations stemming from standard numerical libraries such as BLAS
and LAPACK (Demmel, 1997). Similar to how environments such as R are imple-
mented, these underlying libraries can be replaced in a transparent manner with variants
that are optimised to the specific hardware platform and/or multi-threaded to automat-
ically take advantage of the now-common multi-core platforms (Kurzak et al., 2010).

Armadillo uses a delayed evaluation approach to combine several operations into
one and reduce (or eliminate) the need for temporary objects. In contrast to brute-force
evaluations, delayed evaluation can provide considerable performance improvements
as well as reduced memory usage. The delayed evaluation machinery is accomplished
through template meta-programming (Vandevoorde and Josuttis, 2002; Abrahams and
Gurtovoy, 2004), where the C++ compiler is induced to reason about mathematical
expressions at compile time. Where possible, the C++ compiler can generate machine
code that is tailored for each expression.

As an example of the possible efficiency gains, let us consider the expression

Armadillo function Description

X(1,2) = 3 Assign value 3 to element at location (1,2) of matrix X
X = A + B Add matrices A and B
X(span(1,2), span(3,4)) Provide read/write access to submatrix of X
zeros(rows [, cols [, slices])) Generate vector (or matrix or cube) of zeros
ones(rows [, cols [, slices])) Generate vector (or matrix or cube) of ones
eye(rows, cols) Matrix diagonal set to 1, off-diagonal elements set to 0
repmat(X, row_copies, col_copies) Replicate matrix X in block-like manner
det(X) Returns the determinant of matrix X
norm(X, p) Compute the p-norm of matrix or vector X
rank(X) Compute the rank of matrix X
min(X, dim=0); max(X, dim=0) Extremum value of each column of X (row if dim=1)
trans(X) or X.t() Return transpose of X
R = chol(X) Cholesky decomposition of X such that RT R = X
inv(X) or X.i() Returns the inverse of square matrix X
pinv(X) Returns the pseudo-inverse of matrix X
lu(L, U, P, X) LU decomp. with partial pivoting; also lu(L, U, X)

qr(Q, R, X) QR decomp. into orthogonal Q and right-triangular R
X = solve(A, B) Solve system AX = B for X
s = svd(X); svd(U, s, V, X) Singular-value decomposition of X

Table 1: Selected Armadillo functions with brief descriptions; see http://arma.sf.net/docs.html for
more complete documentation. Several optional additional arguments have been omitted here for brevity.

3

X = A − B + C, where A, B and C are matrices. A brute-force implementation would
evaluate A − B first and store the result in a temporary matrix T . The next operation
would be T + C, with the result finally stored in X. The creation of the temporary ma-
trix, and using two separate loops for the subtraction and addition of matrix elements
is suboptimal from an efficiency point of view.

Through the overloading of mathematical operators, Armadillo avoids the genera-
tion of the temporary matrix by first converting the expression into a set of lightweight
Glue objects, which only store references to the matrices and Armadillo’s represen-
tations of mathematical expressions (eg. other Glue objects). To indicate that an op-
eration comprised of subtraction and addition is required, the exact type of the Glue

objects is automatically inferred from the given expression through template meta-
programming. More specifically, given the expression X = A − B + C, Armadillo auto-
matically induces the compiler to generate an instance of the lightweight Glue storage
object with the following C++ type:

Glue< Glue<Mat, Mat, glue minus>, Mat, glue plus>

where Glue<...> indicates that Glue is a C++ template class, with the items between
‘<’ and ‘>’ specifying template parameters; the outer Glue<..., Mat, glue plus>

is the Glue object indicating an addition operation, storing a reference to a matrix as
well as a reference to another Glue object; the inner Glue<Mat, Mat, glue minus>

stores references to two matrices and indicates a subtraction operation. In both the
inner and outer Glue, the type Mat specifies that a reference to a matrix object is to be
held.

The expression evaluator in Armadillo is then automatically invoked through the
“=” operation, which interprets (at compile time) the template parameters of the com-
pound Glue object and generates C++ code equivalent to:

for(int i=0; i<N; i++) { X[i] = (A[i] - B[i]) + C[i]; }

where N is the number of elements in A, B and C, with A[i] indicating the i-th ele-
ment in A. As such, apart from the lightweight Glue objects (for which memory is pre-
allocated at compile time), no other temporary object is generated, and only one loop is
required instead of two. Given a sufficiently advanced C++ compiler, the lightweight
Glue objects can be optimised away, as they are automatically generated by the com-
piler and only contain compile-time generated references; the resultant machine code
can appear as if the Glue objects never existed in the first place.

Note that due to the ability of the Glue object to hold references to other Glue ob-
jects, far longer and more complicated operations can be easily accommodated. Further
discussion of template meta-programming is beyond the scope of this paper; for more
details, the interested reader is referred to Vandevoorde and Josuttis (2002) as well
as Abrahams and Gurtovoy (2004). Reddy et al. (2013) provide a recent application of
Armadillo in computer vision and pattern recognition.

4

3. RcppArmadillo

The RcppArmadillo package (François et al., 2012) employs the Rcpp package
(Eddelbuettel and François, 2011, 2012; Eddelbuettel, 2013) to provide a bidirectional
interface between R and C++ at the object level. Using templates, R objects such as
vectors and matrices can be mapped directly to the corresponding Armadillo objects.

Consider the simple example in Listing 1. Given a vector, the g() function returns
both the outer and inner products. We load the inline package (Sklyar et al., 2012),
which provides cxxfunction() that we use to compile, link and load the C++ code
which is passed as the body argument. We declare the function signature to contain a
single argument named ‘vs’. On line five, this argument is used to instantiate an Ar-
madillo column vector object named ‘v’ (using the templated conversion function as()
from Rcpp). In lines six and seven, the outer and inner product of the column vector
are calculated by appropriately multiplying the vector with its transpose. This shows
how the * operator for multiplication has been overloaded to provide the appropriate
operation for the types implemented by Armadillo. The inner product creates a scalar
variable, and in contrast to R where each object is a vector type (even if of length one),
we have to explicitly convert using as_scalar() to assign the value to a variable of
type double.

Finally, the last line creates an R named list type containing both results. As a result
of calling cxxfunction(), a new function is created. It contains a reference to the
native code, compiled on the fly based on the C++ code provided to cxxfunction()

R> library(inline)

2 R>

R> g <- cxxfunction(signature(vs="numeric"),

4 + plugin="RcppArmadillo" , body=’

+ arma::vec v = Rcpp::as<arma::vec>(vs);

6 + arma::mat op = v * v.t();

+ double ip = arma::as_scalar(v.t() * v);

8 + return Rcpp::List::create(Rcpp::Named("outer")=op,

+ Rcpp::Named("inner")=ip);

10 +’)

R> g(7:11)

12 $outer

[,1] [,2] [,3] [,4] [,5]

14 [1,] 49 56 63 70 77

[2,] 56 64 72 80 88

16 [3,] 63 72 81 90 99

[4,] 70 80 90 100 110

18 [5,] 77 88 99 110 121

20 $inner

[1] 415

Listing 1: Integrating Armadillo-based C++ code via the RcppArmadillo package.

5

and makes it available directly from R under a user-assigned function name, here g().
The listing also shows how the Rcpp and arma namespaces are used to disambiguate
symbols from the two libraries; the :: operator is already familiar to R programmers
who use the NAMESPACE directive in R in a similar fashion.

The listing also demonstrates how the new function g() can be called with a suit-
able argument. Here we create a vector of five elements, containing values ranging
from 7 to 11. The function’s output, here the list containing both outer and inner prod-
uct, is then displayed as it is not assigned to a variable.

This simple example illustrates how R objects can be transferred directly into cor-
responding Armadillo objects using the interface code provided by Rcpp. It also shows
how deployment of RcppArmadillo is straightforward, even for interactive work where
functions can be compiled on the fly. Similarly, usage in packages is also uncompli-
cated and follows the documentation provided with Rcpp (Eddelbuettel and François,
2012; Eddelbuettel, 2013).

4. Kalman Filtering Example

The Kalman filter is ubiquitous in many engineering disciplines as well as in statis-
tics and econometrics (Tusell, 2011). A recent example of an application is volatility
extraction in a diffusion option pricing model (Li, 2013). Even in its simplest linear
form, the Kalman filter can provide simple estimates by recursively applying linear
updates which are robust to noise and can cope with missing data. Moreover, the esti-
mation process is lightweight and fast, and consumes only minimal amounts of memory
as few state variables are required. We discuss a standard example below. The (two-
dimensional) position of an object is estimated based on past values. A 6 × 1 state
vector includes X and Y coordinates determining the position, two variables for speed
(or velocity) VX and VY relative to the two coordinates, as well as two acceleration
variables AX and AY .

We have the positions being updated as a function of the velocity

X = X0 + VXdt and Y = Y0 + VYdt,

and the velocity being updated as a function of the (unobserved) acceleration:

Vx = VX,0 + AXdt and Vy = VY,0 + AYdt.

With covariance matrices Q and R for (Gaussian) error terms, the standard Kalman
filter estimation involves a linear prediction step resulting in a new predicted state vec-
tor, and a new covariance estimate. This leads to a residuals vector and a covariance
matrix for residuals which are used to determine the (optimal) Kalman gain, which is
then used to update the state estimate and covariance matrix.

All of these steps involve only matrix multiplication and inversions, making the
algorithm very suitable for an implementation in any language which can use matrix

6

% Copyright 2010 The MathWorks, Inc.

2 function y = kalmanfilter(z)

dt=1;

4 % Initialize state transition matrix

A=[1 0 dt 0 0 0; 0 1 0 dt 0 0;... % [x], [y]

6 0 0 1 0 dt 0; 0 0 0 1 0 dt;... % [Vx], [Vy]

0 0 0 0 1 0 ; 0 0 0 0 0 1]; % [Ax], [Ay]

8 H = [1 0 0 0 0 0; 0 1 0 0 0 0]; % Init. measuremnt mat

Q = eye(6);

10 R = 1000 * eye(2);

persistent x_est p_est % Init. state cond.

12 if isempty(x_est)

x_est = zeros(6, 1); % x_est=[x,y,Vx,Vy,Ax,Ay]’

14 p_est = zeros(6, 6);

end

16

x_prd = A * x_est; % Predicted state and covariance

18 p_prd = A * p_est * A’ + Q;

20 S = H * p_prd’ * H’ + R; % Estimation

B = H * p_prd’;

22 klm_gain = (S \ B)’;

24 % Estimated state and covariance

x_est = x_prd + klm_gain * (z - H * x_prd);

26 p_est = p_prd - klm_gain * H * p_prd;

y = H * x_est; % Compute the estimated measurements

28 end % of the function

Listing 2: Basic Kalman Filter in Matlab.

expressions. An example for Matlab is provided on the Mathworks website1 and shown
in Listing 2.

A straightforward R implementation can be written as a close transcription of the
Matlab version; we refer to this version as FirstKalmanR. It is shown in Listing 3.
A slightly improved version (where several invariant statements are moved out of the
repeatedly-called function) is provided in Listing 4 on page 9 showing the function
KalmanR. The estimates of the state vector and its covariance matrix are updated iter-
atively. The Matlab implementation uses two variables declared ‘persistent’ for this.
In R, which does not have such an attribute for variables, we store them in the en-
closing environment of the outer function KalmanR, which contains an inner function
kalmanfilter that is called for each observation.

Armadillo provides efficient vector and matrix classes to implement the Kalman

1See http://www.mathworks.com/products/matlab-coder/demos.html?file=/products/

demos/shipping/coder/coderdemo_kalman_filter.html.

7

filter. In Listing 5 on page 10, we show a simple C++ class containing a basic con-
structor as well as one additional member function. The constructor can be used to
initialise all variables as we are guaranteed that the code in the class constructor will
be executed exactly once when this class is instantiated. A class also makes it easy to
add ‘persistent’ local variables, which is a feature we need here. Given such a class,
the estimation can be accessed from R via a short and simple routine such as the one
shown in Listing 6.

FirstKalmanR <- function(pos) {

2

kalmanfilter <- function(z) {

4 dt <- 1

A <- matrix(c(1, 0, dt, 0, 0, 0, 0, 1, 0, dt, 0, 0, # x, y

6 0, 0, 1, 0, dt, 0, 0, 0, 0, 1, 0, dt, # Vx, Vy

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1), # Ax, Ay

8 6, 6, byrow=TRUE)

H <- matrix(c(1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),

10 2, 6, byrow=TRUE)

Q <- diag(6)

12 R <- 1000 * diag(2)

14 xprd <- A %*% xest # predicted state and covriance

pprd <- A %*% pest %*% t(A) + Q

16

S <- H %*% t(pprd) %*% t(H) + R # estimation

18 B <- H %*% t(pprd)

kalmangain <- t(solve(S, B))

20

estimated state and covariance, assign to vars in parent env

22 xest <<- xprd + kalmangain %*% (z - H %*% xprd)

pest <<- pprd - kalmangain %*% H %*% pprd

24

compute the estimated measurements

26 y <- H %*% xest

}

28 xest <- matrix(0, 6, 1)

pest <- matrix(0, 6, 6)

30

N <- nrow(pos)

32 y <- matrix(NA, N, 2)

for (i in 1:N) {

34 y[i,] <- kalmanfilter(t(pos[i,,drop=FALSE]))

}

36 invisible(y)

}

Listing 3: Basic Kalman filter in R (referred to as FirstKalmanR).

8

KalmanR <- function(pos) {

2

kalmanfilter <- function(z) {

4 ## predicted state and covariance

xprd <- A %*% xest

6 pprd <- A %*% pest %*% t(A) + Q

8 ## estimation

S <- H %*% t(pprd) %*% t(H) + R

10 B <- H %*% t(pprd)

12 kalmangain <- t(solve(S, B))

14 ## estimated state and covariance

assigned to vars in parent env

16 xest <<- xprd + kalmangain %*% (z - H %*% xprd)

pest <<- pprd - kalmangain %*% H %*% pprd

18

compute the estimated measurements

20 y <- H %*% xest

}

22

dt <- 1

24 A <- matrix(c(1, 0, dt, 0, 0, 0, # x

0, 1, 0, dt, 0, 0, # y

26 0, 0, 1, 0, dt, 0, # Vx

0, 0, 0, 1, 0, dt, # Vy

28 0, 0, 0, 0, 1, 0, # Ax

0, 0, 0, 0, 0, 1), # Ay

30 6, 6, byrow=TRUE)

H <- matrix(c(1, 0, 0, 0, 0, 0,

32 0, 1, 0, 0, 0, 0),

2, 6, byrow=TRUE)

34 Q <- diag(6)

R <- 1000 * diag(2)

36 N <- nrow(pos)

Y <- matrix(NA, N, 2)

38

xest <- matrix(0, 6, 1)

40 pest <- matrix(0, 6, 6)

42 for (i in 1:N) {

Y[i,] <- kalmanfilter(t(pos[i,,drop=FALSE]))

44 }

invisible(Y)

46 }

Listing 4: An improved Kalman filter implemented in R (referred to as KalmanR).

9

using namespace arma;

2

class Kalman {

4 private:

mat A, H, Q, R, xest, pest;

6 double dt;

8 public:

// constructor, sets up data structures

10 Kalman() : dt(1.0) {

A.eye(6,6);

12 A(0,2) = A(1,3) = A(2,4) = A(3,5) = dt;

H.zeros(2,6);

14 H(0,0) = H(1,1) = 1.0;

Q.eye(6,6);

16 R = 1000 * eye(2,2);

xest.zeros(6,1);

18 pest.zeros(6,6);

}

20

// sole member function: estimate model

22 mat estimate(const mat & Z) {

unsigned int n = Z.n_rows, k = Z.n_cols;

24 mat Y = zeros(n, k);

mat xprd, pprd, S, B, kalmangain;

26 colvec z, y;

28 for (unsigned int i = 0; i<n; i++) {

z = Z.row(i).t();

30 // predicted state and covariance

xprd = A * xest;

32 pprd = A * pest * A.t() + Q;

// estimation

34 S = H * pprd.t() * H.t() + R;

B = H * pprd.t();

36 kalmangain = (solve(S, B)).t();

// estimated state and covariance

38 xest = xprd + kalmangain * (z - H * xprd);

pest = pprd - kalmangain * H * pprd;

40 // compute the estimated measurements

y = H * xest;

42 Y.row(i) = y.t();

}

44 return Y;

}

46 };

Listing 5: A Kalman filter class in C++, using Armadillo classes.

10

R> kalmanSrc <- ’

2 + mat Z = as<mat>(ZS); // passed from R

+ Kalman K;

4 + mat Y = K.estimate(Z);

+ return wrap(Y);’

6 R> KalmanCpp <- cxxfunction(signature(ZS="numeric"),

+ body=kalmanSrc, include=kalmanClass,

8 + plugin="RcppArmadillo")

Listing 6: A Kalman filter function implemented in a mixture of R and C++ code,
using the RcppArmadillo package to embed Armadillo based C++ code (using the
Kalman class from Listing 5) within R code. The resulting program is referred to as
KalmanCpp.

The content of Listing 5 is assigned to a variable kalmanClass which (on line
seven) is passed to the include= argument. This provides the required class declara-
tion and definition. The four lines of code in lines two to five, assigned to kalmanSrc,
provide the function body required by cxxfunction(). From both these elements and
the function signature argument, cxxfunction() creates a very simple yet efficient
C++ implementation of the Kalman filter which we can access from R. Given a vector
of observations Z, it estimates a vector of position estimates Y .

−0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

Trajectory
Estimate

Figure 1: An example of object trajectory and the corresponding Kalman filter estimate.

11

R> require(rbenchmark)

2 R> require(compiler)

R>

4 R> FirstKalmanRC <- cmpfun(FirstKalmanR)

R> KalmanRC <- cmpfun(KalmanR)

6 R>

R> ## Read data, ensure identical results

8 R> pos <- as.matrix(read.table("pos.txt" , header=FALSE,

+ col.names=c("x" ,"y")))

10 R> stopifnot(all.equal(KalmanR(pos), KalmanRC(pos)),

+ all.equal(KalmanR(pos), KalmanCpp(pos)),

12 + all.equal(FirstKalmanR(pos), FirstKalmanRC(pos)),

+ all.equal(KalmanR(pos), FirstKalmanR(pos)))

14 R>

R> res <- benchmark(KalmanR(pos), KalmanRC(pos),

16 + FirstKalmanR(pos), FirstKalmanRC(pos),

+ KalmanCpp(pos),

18 + columns = c("test" , "replications" ,

+ "elapsed" , "relative"),

20 + order="relative" ,

+ replications=100)

Listing 7: R code for timing comparison of Kalman filter implementations.

This is illustrated in Figure 1 which displays the original object trajectory (us-
ing light-coloured square symbols) as well as the position estimates provided by the
Kalman filter (using dark-coloured circles). This uses the same dataset provided by the
Mathworks for their example; the data is believed to be simulated.

We note that this example is meant to be illustrative and does not attempt to provide
a reference implementation of a Kalman filter. R contains several packages providing
various implementations, as discussed in the survey provided by Tusell (2011).

5. Empirical Speed Comparison

Listing 7 contains the code for creating a simple benchmarking exercise. It com-
pares several functions for implementing the Kalman filter, all executed within the R
environment. Specifically, we examine the initial R version FirstKalmanR shown
in Listing 3, a refactored version KalmanR shown in Listing 4, an improved version2

due to an anonymous referee (not shown, but included in the package), as well as
byte-compiled versions (designated with a trailing ‘C’) created by using the byte-code
compiler introduced with R version 2.13.0 (Tierney, 2012). Finally, the C++ version
shown in Listings 5 and 6 is used. Also shown are the R statements for creating the
byte-compiled variants via calls to cmpfun(). This is followed by a test to ensure that

2The improved version replaces explicit transpose and multiplication with the crossprod function.

12

Implementation Time in seconds Relative to best solution

KalmanCpp 0.73 1.0
KalmanRimpC 21.10 29.0
KalmanRimp 22.01 30.2
KalmanRC 28.64 39.3
KalmanR 31.30 43.0
FirstKalmanRC 49.40 67.9
FirstKalmanR 64.00 88.0

Table 2: Performance comparison of various implementations of a Kalman filter. KalmanCpp is the
RcppArmadillo based implementation in C++ shown in Listings 5 and 6. KalmanRimp is an improved ver-
sion supplied by an anonymous referee which uses the crossprod function instead of explicit transpose and
multiplication. KalmanR is the R implementation shown in Listing 4; FirstKalmanR is a direct translation of
the original Matlab implementation shown in Listing 3. In all cases, the trailing ‘C’ denotes a byte-compiled
variant of the corresponding R code. Timings are averaged over 500 replications. The comparison was made
using R version 2.15.2, Rcpp version 0.10.2 and RcppArmadillo version 0.3.6.1 on Ubuntu 12.10 running in
64-bit mode on a 2.67 GHz Intel i7 processor.

all variants provide the same results. Next, the actual benchmark is executed before the
result is displayed.

The results are shown in Table 2. Optimising and improving the R code has merits:
we notice a steady improvement from the slowest R version to the fastest R version.
Byte-compiling R code provides an additional performance gain which is more pro-
nounced for the slower variant than the fastest implementation in R. However, the
KalmanCpp function created using RcppArmadillo clearly outperforms all other vari-
ants, underscoring the principal point of this paper.

These results are consistent with the empirical observations made by Morandat
et al. (2012), who also discuss several reasons for the slow speed of R compared to the
C language, a close relative of C++.

6. Conclusion

This paper introduced the RcppArmadillo package for use within the R statistical
environment. By using the Rcpp interface package, RcppArmadillo brings the speed
of C++ along with the highly expressive Armadillo linear algebra library to the R
language. A small example implementing a Kalman filter illustrated two key aspects.
First, orders of magnitude of performance gains can be obtained by deploying C++

code along with R. Second, the ease of use and readability of the corresponding C++

code is similar to the R code from which it was derived.
This combination makes RcppArmadillo a compelling tool in the arsenal of ap-

plied researchers deploying computational methods in statistical computing and data
analysis. As of early-2013, about 30 R packages on CRAN deploy RcppArmadillo3,
showing both the usefulness of Armadillo and its acceptance by the R community.

3See http://cran.r-project.org/package=RcppArmadillo for more details.

13

Acknowledgements

NICTA is funded by the Australian Government as represented by the Department
of Broadband, Communications and the Digital Economy, as well as the Australian
Research Council through the ICT Centre of Excellence program.

Adam M. Johansen provided helpful comments on an earlier draft. Comments by
two anonymous referees and one editor further improved the paper and are gratefully
acknowledged.

References

Abrahams, D., Gurtovoy, A., 2004. C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond. Addison-Wesley Professional.

Demmel, J. W., 1997. Applied Numerical Linear Algebra. SIAM, ISBN 978-
0898713893.

Eddelbuettel, D., 2013. Seamless R and C++ Integration with Rcpp. Springer, New
York.

Eddelbuettel, D., François, R., 2011. Rcpp: Seamless R and C++ integration. Journal
of Statistical Software 40 (8), 1–18.
URL http://www.jstatsoft.org/v40/i08/

Eddelbuettel, D., François, R., 2012. Rcpp: Seamless R and C++ Integration. R pack-
age version 0.10.2.
URL http://CRAN.R-Project.org/package=Rcpp

François, R., Eddelbuettel, D., Bates, D., 2012. RcppArmadillo: Rcpp integration for
Armadillo templated linear algebra library. R package version 0.3.6.1.
URL http://CRAN.R-Project.org/package=RcppArmadillo

Kurzak, J., Bader, D. A., Dongarra, J. (Eds.), 2010. Scientific Computing with Multi-
core and Accelerators. CRC Press, ISBN 978-1439825365.

Li, J., 2013. An unscented Kalman smoother for volatility extraction: Evidence from
stock prices and options. Computational Statistics and Data Analysis 58, 15–26.

Meyers, S., 2005. Effective C++: 55 Specific Ways to Improve Your Programs and
Designs, 3rd Edition. Addison-Wesley Professional, ISBN 978-0321334879.

Morandat, F., Hill, B., Osvald, L., Vitek, J., 2012. Evaluating the design of the R lan-
guage. In: ECOOP 2012: Proceedings of European Conference on Object-Oriented
Programming.

R Development Core Team, 2012. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-
900051-07-0.
URL http://www.R-project.org/

14

Reddy, V., Sanderson, C., Lovell, B. C., 2013. Improved foreground detection via
block-based classifier cascade with probabilistic decision integration. IEEE Trans-
actions on Circuits and Systems for Video Technology 23 (1), 83–93.

Sanderson, C., 2010. Armadillo: An open source C++ algebra library for fast proto-
typing and computationally intensive experiments. Tech. rep., NICTA.
URL http://arma.sourceforge.net

Sklyar, O., Murdoch, D., Smith, M., Eddelbuettel, D., François, R., 2012. inline: Inline
C, C++, Fortran function calls from R. R package version 0.3.10.
URL http://CRAN.R-Project.org/package=inline

Tierney, L., 2012. A byte-code compiler for R. Manuscript, Department of Statistics
and Actuarial Science, University of Iowa.
URL www.stat.uiowa.edu/~luke/R/compiler/compiler.pdf

Tusell, F., 2011. Kalman filtering in R. Journal of Statistical Software 39 (2), 1–27.
URL http://www.jstatsoft.org/v39/i02

Vandevoorde, D., Josuttis, N. M., 2002. C++ Templates: The Complete Guide.
Addison-Wesley Professional.

Veldhuizen, T. L., 1998. Arrays in Blitz++. In: ISCOPE ’98: Proceedings of the Sec-
ond International Symposium on Computing in Object-Oriented Parallel Environ-
ments. Springer-Verlag, London, UK, pp. 223–230, ISBN 3-540-65387-2.

15

