armadillo
Armadillo
C++ library for linear algebra & scientific computing
[top] API Documentation for Armadillo 14.2


Preamble

 


Overview
Matrix, Vector, Cube and Field Classes
Member Functions & Variables
Generated Vectors / Matrices / Cubes
Functions of Vectors / Matrices / Cubes
Decompositions, Factorisations, Inverses and Equation Solvers (Dense Matrices)
Decompositions, Factorisations and Equation Solvers (Sparse Matrices)
Signal & Image Processing
Statistics & Clustering
Miscellaneous




Matrix, Vector, Cube and Field Classes



Mat<type>
mat
cx_mat


Col<type>
vec
cx_vec


Row<type>
rowvec
cx_rowvec


Cube<type>
cube
cx_cube


field<object_type>


SpMat<type>
sp_mat
sp_cx_mat


operators:  +    *  %  /  ==  !=  <=  >=  <  >  &&  ||




Member Functions & Variables



attributes


element/object access via (), [] and .at()


element initialisation


.zeros()
  (member function of Mat, Col, Row, SpMat, Cube)
.zeros( n_elem )
  (member function of Col and Row)
.zeros( n_rows, n_cols )
  (member function of Mat and SpMat)
.zeros( n_rows, n_cols, n_slices )
  (member function of Cube)
.zeros( size(X) )
  (member function of Mat, Col, Row, Cube, SpMat)


.ones()
  (member function of Mat, Col, Row, Cube)
.ones( n_elem )
  (member function of Col and Row)
.ones( n_rows, n_cols )
  (member function of Mat)
.ones( n_rows, n_cols, n_slices )
  (member function of Cube)
.ones( size(X) )
  (member function of Mat, Col, Row, Cube)


.eye()
.eye( n_rows, n_cols )
.eye( size(X) )


.randu()
  (member function of Mat, Col, Row, Cube)
.randu( n_elem )
  (member function of Col and Row)
.randu( n_rows, n_cols )
  (member function of Mat)
.randu( n_rows, n_cols, n_slices )
  (member function of Cube)
.randu( size(X) )
  (member function of Mat, Col, Row, Cube)

.randn()
  (member function of Mat, Col, Row, Cube)
.randn( n_elem )
  (member function of Col and Row)
.randn( n_rows, n_cols )
  (member function of Mat)
.randn( n_rows, n_cols, n_slices )
  (member function of Cube)
.randn( size(X) )
  (member function of Mat, Col, Row, Cube)


.fill( value )


.imbue( functor )
.imbue( lambda_function )


.clean( threshold )


.replace( old_value, new_value )


.clamp( min_value, max_value )


.transform( functor )
.transform( lambda_function )


.for_each( functor )
.for_each( lambda_function )


.set_size( n_elem )
  (member function of Col, Row, field)
.set_size( n_rows, n_cols )
  (member function of Mat, SpMat, field)
.set_size( n_rows, n_cols, n_slices )
  (member function of Cube and field)
.set_size( size(X) )
  (member function of Mat, Col, Row, Cube, SpMat, field)


.reshape( n_rows, n_cols )
  (member function of Mat and SpMat)
.reshape( n_rows, n_cols, n_slices )
  (member function of Cube)
.reshape( size(X) )
  (member function of Mat, Cube, SpMat)


.resize( n_elem )
  (member function of Col, Row)
.resize( n_rows, n_cols )
  (member function of Mat and SpMat)
.resize( n_rows, n_cols, n_slices )
  (member function of Cube)
.resize( size(X) )
  (member function of Mat, Col, Row, Cube, SpMat)


.copy_size( A )


.reset()


submatrix views


subcube views and slices


subfield views


.diag()
.diag( k )


.each_col()    .each_row()    (form 1)
.each_col( vector_of_indices )   .each_row( vector_of_indices )   (form 2)
.each_col( lambda_function )    .each_row( lambda_function )    (form 3)


.each_slice()   (form 1)
.each_slice( vector_of_indices )   (form 2)
.each_slice( lambda_function )   (form 3)
.each_slice( lambda_function, use_mp )   (form 4)


.set_imag( X )
.set_real( X )


.insert_rows( row_number, X )
.insert_rows( row_number, number_of_rows )
  (member functions of Mat, Col and Cube)
 
.insert_cols( col_number, X )
.insert_cols( col_number, number_of_cols )
  (member functions of Mat, Row and Cube)
 
.insert_slices( slice_number, X )
.insert_slices( slice_number, number_of_slices )
  (member functions of Cube)


.shed_row( row_number )
.shed_rows( first_row, last_row )
.shed_rows( vector_of_indices )
  (member function of Mat, Col, SpMat, Cube)
(member function of Mat, Col, SpMat, Cube)
(member function of Mat, Col)
 
.shed_col( column_number )
.shed_cols( first_column, last_column )
.shed_cols( vector_of_indices )
  (member function of Mat, Row, SpMat, Cube)
(member function of Mat, Row, SpMat, Cube)
(member function of Mat, Row)
 
.shed_slice( slice_number )
.shed_slices( first_slice, last_slice )
.shed_slices( vector_of_indices )
  (member functions of Cube)


.swap_rows( row1, row2 )
.swap_cols( col1, col2 )


.swap( X )


.memptr()


.colptr( col_number )


iterators (dense matrices & vectors)


iterators (cubes)


iterators (sparse matrices)


iterators (dense submatrices & subcubes)


compatibility container functions


.as_col()
.as_row()


.col_as_mat( col_number )
.row_as_mat( row_number )


.as_dense()


.t()
.st()


.i()


.min()
.max()


.index_min()
.index_max()


.eval()


.in_range( i )
  (member of Mat, Col, Row, Cube, SpMat, field)
.in_range( span(start, end) )
  (member of Mat, Col, Row, Cube, SpMat, field)
 
.in_range( row, col )
  (member of Mat, Col, Row, SpMat, field)
.in_range( span(start_row, end_row), span(start_col, end_col) )
  (member of Mat, Col, Row, SpMat, field)
 
.in_range( row, col, slice )
  (member of Cube and field)
.in_range( span(start_row, end_row), span(start_col, end_col), span(start_slice, end_slice) )
  (member of Cube and field)
 
.in_range( first_row, first_col, size(X) )   (X is a matrix or field)
  (member of Mat, Col, Row, SpMat, field)
.in_range( first_row, first_col, size(n_rows, n_cols) )
  (member of Mat, Col, Row, SpMat, field)
 
.in_range( first_row, first_col, first_slice, size(Q) )   (Q is a cube or field)
  (member of Cube and field)
.in_range( first_row, first_col, first_slice, size(n_rows, n_cols n_slices) )
  (member of Cube and field)


.is_empty()


.is_vec()
.is_colvec()
.is_rowvec()


.is_sorted()
.is_sorted( sort_direction )
.is_sorted( sort_direction, dim )


.is_trimatu()
.is_trimatl()


.is_diagmat()


.is_square()


.is_symmetric()
.is_symmetric( tol )


.is_hermitian()
.is_hermitian( tol )


.is_sympd()
.is_sympd( tol )


.is_zero()
.is_zero( tolerance )


.is_finite()


.has_inf()


.has_nan()


.print()
.print( header )

.print( stream )
.print( stream, header )


.raw_print()
.raw_print( header )

.raw_print( stream )
.raw_print( stream, header )


.brief_print()
.brief_print( header )

.brief_print( stream )
.brief_print( stream, header )


saving / loading matrices & cubes

.save( filename )
.save( filename, file_type )

.save( stream )
.save( stream, file_type )

.save( hdf5_name(filename, dataset) )
.save( hdf5_name(filename, dataset, settings) )

.save( csv_name(filename, header) )
.save( csv_name(filename, header, settings) )
       .load( filename )
.load( filename, file_type )

.load( stream )
.load( stream, file_type )

.load( hdf5_name(filename, dataset) )
.load( hdf5_name(filename, dataset, settings) )

.load( csv_name(filename, header) )
.load( csv_name(filename, header, settings) )



saving / loading fields

.save( name )
.save( name, file_type )

.save( stream )
.save( stream, file_type )
       .load( name )
.load( name, file_type )

.load( stream )
.load( stream, file_type )





Generated Vectors / Matrices / Cubes



linspace( start, end )
linspace( start, end, N )


logspace( A, B )
logspace( A, B, N )


regspace( start, end )
regspace( start, delta, end )


randperm( N )
randperm( N, M )


eye( n_rows, n_cols )
eye( size(X) )


ones( n_elem )
ones( n_rows, n_cols )
ones( n_rows, n_cols, n_slices )
ones( size(X) )


zeros( n_elem )
zeros( n_rows, n_cols )
zeros( n_rows, n_cols, n_slices )
zeros( size(X) )


randu( )
randu( distr_param(a,b) )

randu( n_elem )
randu( n_elem, distr_param(a,b) )

randu( n_rows, n_cols )
randu( n_rows, n_cols, distr_param(a,b) )

randu( n_rows, n_cols, n_slices )
randu( n_rows, n_cols, n_slices, distr_param(a,b) )

randu( size(X) )
randu( size(X), distr_param(a,b) )


randn( )
randn( distr_param(mu,sd) )

randn( n_elem )
randn( n_elem, distr_param(mu,sd) )

randn( n_rows, n_cols )
randn( n_rows, n_cols, distr_param(mu,sd) )

randn( n_rows, n_cols, n_slices )
randn( n_rows, n_cols, n_slices, distr_param(mu,sd) )

randn( size(X) )
randn( size(X), distr_param(mu,sd) )


randg( )
randg( distr_param(a,b) )

randg( n_elem )
randg( n_elem, distr_param(a,b) )

randg( n_rows, n_cols )
randg( n_rows, n_cols, distr_param(a,b) )

randg( n_rows, n_cols, n_slices )
randg( n_rows, n_cols, n_slices, distr_param(a,b) )

randg( size(X) )
randg( size(X), distr_param(a,b) )


randi( )
randi( distr_param(a,b) )

randi( n_elem )
randi( n_elem, distr_param(a,b) )

randi( n_rows, n_cols )
randi( n_rows, n_cols, distr_param(a,b) )

randi( n_rows, n_cols, n_slices )
randi( n_rows, n_cols, n_slices, distr_param(a,b) )

randi( size(X) )
randi( size(X), distr_param(a,b) )


speye( n_rows, n_cols )
speye( size(X) )


spones( A )


sprandu( n_rows, n_cols, density )
sprandn( n_rows, n_cols, density )

sprandu( size(X), density )
sprandn( size(X), density )


toeplitz( A )
toeplitz( A, B )
circ_toeplitz( A )




Functions of Vectors / Matrices / Cubes



abs( X )


accu( X )


affmul( A, B )


all( V )
all( X )
all( X, dim )


any( V )
any( X )
any( X, dim )


approx_equal( A, B, method, tol )
approx_equal( A, B, method, abs_tol, rel_tol )


arg( X )


as_scalar( expression )


clamp( X, min_val, max_val )


cond( A )


conj( X )


conv_to< type >::from( X )


cross( A, B )


cumsum( V )
cumsum( X )
cumsum( X, dim )


cumprod( V )
cumprod( X )
cumprod( X, dim )


val = det( A )   (form 1)
det( val, A )   (form 2)


diagmat( V )
diagmat( V, k )

diagmat( X )
diagmat( X, k )


diagvec( X )
diagvec( X, k )


diags( V, D, n_rows, n_cols )
spdiags( V, D, n_rows, n_cols )


diff( V )
diff( V, k )

diff( X )
diff( X, k )
diff( X, k, dim )


dot( A, B )
cdot( A, B )
norm_dot( A, B )


eps( X )


B = expmat( A )
expmat( B, A )


B = expmat_sym( A )
expmat_sym( B, A )


find( X )
find( X, k )
find( X, k, s )


find_finite( X )


find_nonfinite( X )


find_nan( X )


find_unique( X )
find_unique( X, ascending_indices )


fliplr( X )
flipud( X )


imag( X )
real( X )


uvec sub = ind2sub( size(X), index )   (form 1)
umat sub = ind2sub( size(X), vector_of_indices )   (form 2)


index_min( V )
index_min( M )
index_min( M, dim )
index_min( Q )
index_min( Q, dim )
       index_max( V )
index_max( M )
index_max( M, dim )
index_max( Q )
index_max( Q, dim )


inplace_trans( X )
inplace_trans( X, method )

inplace_strans( X )
inplace_strans( X, method )


C = intersect( A, B )   (form 1)
intersect( C, iA, iB, A, B )   (form 2)


join_rows( A, B )
join_rows( A, B, C )
join_rows( A, B, C, D )
 
join_cols( A, B )
join_cols( A, B, C )
join_cols( A, B, C, D )
       join_horiz( A, B )
join_horiz( A, B, C )
join_horiz( A, B, C, D )
 
join_vert( A, B )
join_vert( A, B, C )
join_vert( A, B, C, D )


join_slices( cube C, cube D )
join_slices( mat M, mat N )

join_slices( mat M, cube C )
join_slices( cube C, mat M )


kron( A, B )


complex result = log_det( A )   (form 1)
log_det( val, sign, A )   (form 2)


result = log_det_sympd( A )   (form 1)
log_det_sympd( result, A )   (form 2)


B = logmat( A )
logmat( B, A )


B = logmat_sympd( A )
logmat_sympd( B, A )


min( V )
min( M )
min( M, dim )
min( Q )
min( Q, dim )
min( A, B )
       max( V )
max( M )
max( M, dim )
max( Q )
max( Q, dim )
max( A, B )


nonzeros( X )


norm( X )
norm( X, p )


norm2est( X )
norm2est( X, tol )
norm2est( X, tol, max_iter )


normalise( V )
normalise( V, p )

normalise( X )
normalise( X, p )
normalise( X, p, dim )


pow( A, scalar )   (form 1)
pow( A, B )   (form 2)


B = powmat( A, n )
powmat( B, A, n )


prod( V )
prod( M )
prod( M, dim )


r = rank( X )   (form 1)
r = rank( X, tolerance )    
  
rank( r, X )   (form 2)
rank( r, X, tolerance )    


rcond( A )


repelem( A, num_copies_per_row, num_copies_per_col )


repmat( A, num_copies_per_row, num_copies_per_col )


reshape( X, n_rows, n_cols )    (X is a vector or matrix)
reshape( X, size(Y) )

reshape( Q, n_rows, n_cols, n_slices )    (Q is a cube)
reshape( Q, size(R) )


resize( X, n_rows, n_cols )    (X is a vector or matrix)
resize( X, size(Y) )

resize( Q, n_rows, n_cols, n_slices )    (Q is a cube)
resize( Q, size(R) )


reverse( V )
reverse( X )
reverse( X, dim )


R = roots( P )
roots( R, P )


shift( V, N )
shift( X, N )
shift( X, N, dim )


shuffle( V )
shuffle( X )
shuffle( X, dim )


size( X )
size( n_rows, n_cols )
size( n_rows, n_cols, n_slices )


sort( V )
sort( V, sort_direction )

sort( X )
sort( X, sort_direction )
sort( X, sort_direction, dim )


sort_index( X )
sort_index( X, sort_direction )

stable_sort_index( X )
stable_sort_index( X, sort_direction )


B = sqrtmat( A )
sqrtmat( B, A )


B = sqrtmat_sympd( A )
sqrtmat_sympd( B, A )


sum( V )
sum( M )
sum( M, dim )
sum( Q )
sum( Q, dim )


uword index = sub2ind( size(M), row, col )(M is a matrix)
uvec indices = sub2ind( size(M), matrix_of_subscripts )
    
uword index = sub2ind( size(Q), row, col, slice )(Q is a cube)
uvec indices = sub2ind( size(Q), matrix_of_subscripts )


symmatu( A )
symmatu( A, do_conj )

symmatl( A )
symmatl( A, do_conj )


trace( X )


trans( A )
strans( A )


trapz( X, Y )
trapz( X, Y, dim )

trapz( Y )
trapz( Y, dim )


trimatu( A )
trimatu( A, k )

trimatl( A )
trimatl( A, k )


trimatu_ind( size(A) )
trimatu_ind( size(A), k )

trimatl_ind( size(A) )
trimatl_ind( size(A), k )


unique( A )


vecnorm( X )
vecnorm( X, p )
vecnorm( X, p, dim )


vectorise( X )
vectorise( X, dim )
vectorise( Q )


miscellaneous element-wise functions:


trigonometric element-wise functions (cos, sin, tan, ...)




Decompositions, Factorisations, Inverses and Equation Solvers (Dense Matrices)



R = chol( X )   (form 1)
R = chol( X, layout )   (form 2)
   
chol( R, X )   (form 3)
chol( R, X, layout )   (form 4)
   
chol( R, P, X, layout, "vector" )   (form 5)
chol( R, P, X, layout, "matrix" )   (form 6)


vec eigval = eig_sym( X )

eig_sym( eigval, X )

eig_sym( eigval, eigvec, X )
eig_sym( eigval, eigvec, X, method )


cx_vec eigval = eig_gen( X )
cx_vec eigval = eig_gen( X, bal )

eig_gen( eigval, X )
eig_gen( eigval, X, bal )

eig_gen( eigval, eigvec, X )
eig_gen( eigval, eigvec, X, bal )

eig_gen( eigval, leigvec, reigvec, X )
eig_gen( eigval, leigvec, reigvec, X, bal )


cx_vec eigval = eig_pair( A, B )

eig_pair( eigval, A, B )

eig_pair( eigval, eigvec, A, B )

eig_pair( eigval, leigvec, reigvec, A, B )


H = hess( X )

hess( H, X )

hess( U, H, X )


B = inv( A )
B = inv( A, settings )

inv( B, A )
inv( B, A, settings )

inv( B, rcond, A )


B = inv_sympd( A )
B = inv_sympd( A, settings )

inv_sympd( B, A )
inv_sympd( B, A, settings )

inv_sympd( B, rcond, A )


lu( L, U, P, X )
lu( L, U, X )


B = null( A )
B = null( A, tolerance )

null( B, A )
null( B, A, tolerance )


B = orth( A )
B = orth( A, tolerance )

orth( B, A )
orth( B, A, tolerance )


B = pinv( A )
B = pinv( A, tolerance )
B = pinv( A, tolerance, method )

pinv( B, A )
pinv( B, A, tolerance )
pinv( B, A, tolerance, method )


qr( Q, R, X )   (form 1)
qr( Q, R, P, X, "vector" )   (form 2)
qr( Q, R, P, X, "matrix" )   (form 3)


qr_econ( Q, R, X )


qz( AA, BB, Q, Z, A, B )
qz( AA, BB, Q, Z, A, B, select )


S = schur( X )

schur( S, X )

schur( U, S, X )


X = solve( A, B )
X = solve( A, B, settings )

solve( X, A, B )
solve( X, A, B, settings )


vec s = svd( X )

svd( vec s, X )

svd( mat U, vec s, mat V, mat X )
svd( mat U, vec s, mat V, mat X, method )

svd( cx_mat U, vec s, cx_mat V, cx_mat X )
svd( cx_mat U, vec s, cx_mat V, cx_mat X, method )


svd_econ( mat U, vec s, mat V, mat X )
svd_econ( mat U, vec s, mat V, mat X, mode )
svd_econ( mat U, vec s, mat V, mat X, mode, method )

svd_econ( cx_mat U, vec s, cx_mat V, cx_mat X )
svd_econ( cx_mat U, vec s, cx_mat V, cx_mat X, mode )
svd_econ( cx_mat U, vec s, cx_mat V, cx_mat X, mode, method )


X = syl( A, B, C )
syl( X, A, B, C )




Decompositions, Factorisations and Equation Solvers (Sparse Matrices)



vec eigval = eigs_sym( X, k )
vec eigval = eigs_sym( X, k, form )
vec eigval = eigs_sym( X, k, form, opts )
vec eigval = eigs_sym( X, k, sigma )
vec eigval = eigs_sym( X, k, sigma, opts )

eigs_sym( eigval, X, k )
eigs_sym( eigval, X, k, form )
eigs_sym( eigval, X, k, form, opts )
eigs_sym( eigval, X, k, sigma )
eigs_sym( eigval, X, k, sigma, opts )

eigs_sym( eigval, eigvec, X, k )
eigs_sym( eigval, eigvec, X, k, form )
eigs_sym( eigval, eigvec, X, k, form, opts )
eigs_sym( eigval, eigvec, X, k, sigma )
eigs_sym( eigval, eigvec, X, k, sigma, opts )


cx_vec eigval = eigs_gen( X, k )
cx_vec eigval = eigs_gen( X, k, form )
cx_vec eigval = eigs_gen( X, k, sigma )
cx_vec eigval = eigs_gen( X, k, form, opts )
cx_vec eigval = eigs_gen( X, k, sigma, opts )

eigs_gen( eigval, X, k )
eigs_gen( eigval, X, k, form )
eigs_gen( eigval, X, k, sigma )
eigs_gen( eigval, X, k, form, opts )
eigs_gen( eigval, X, k, sigma, opts )

eigs_gen( eigval, eigvec, X, k )
eigs_gen( eigval, eigvec, X, k, form )
eigs_gen( eigval, eigvec, X, k, sigma )
eigs_gen( eigval, eigvec, X, k, form, opts )
eigs_gen( eigval, eigvec, X, k, sigma, opts )


vec s = svds( X, k )
vec s = svds( X, k, tol )

svds( vec s, X, k )
svds( vec s, X, k, tol )

svds( mat U, vec s, mat V, sp_mat X, k )
svds( mat U, vec s, mat V, sp_mat X, k, tol )

svds( cx_mat U, vec s, cx_mat V, sp_cx_mat X, k )
svds( cx_mat U, vec s, cx_mat V, sp_cx_mat X, k, tol )


X = spsolve( A, B )
X = spsolve( A, B, solver )
X = spsolve( A, B, solver, opts )

spsolve( X, A, B )
spsolve( X, A, B, solver )
spsolve( X, A, B, solver, opts )


spsolve_factoriser




Signal & Image Processing



conv( A, B )
conv( A, B, shape )


conv2( A, B )
conv2( A, B, shape )


cx_mat Y =  fft( X )
cx_mat Y =  fft( X, n )

cx_mat Z = ifft( cx_mat Y )
cx_mat Z = ifft( cx_mat Y, n )


cx_mat Y =  fft2( X )
cx_mat Y =  fft2( X, n_rows, n_cols )

cx_mat Z = ifft2( cx_mat Y )
cx_mat Z = ifft2( cx_mat Y, n_rows, n_cols )


interp1( X, Y, XI, YI )
interp1( X, Y, XI, YI, method )
interp1( X, Y, XI, YI, method, extrapolation_value )


interp2( X, Y, Z, XI, YI, ZI )
interp2( X, Y, Z, XI, YI, ZI, method )
interp2( X, Y, Z, XI, YI, ZI, method, extrapolation_value )


P = polyfit( X, Y, N )
polyfit( P, X, Y, N )


Y = polyval( P, X )




Statistics & Clustering



mean, median, stddev, var, range


cov( X, Y )
cov( X, Y, norm_type )

cov( X )
cov( X, norm_type )


cor( X, Y )
cor( X, Y, norm_type )

cor( X )
cor( X, norm_type )


hist( V )
hist( V, n_bins )
hist( V, centers )

hist( X, centers )
hist( X, centers, dim )


histc( V, edges )
histc( X, edges )
histc( X, edges, dim )


quantile( V, P )
quantile( X, P )
quantile( X, P, dim )


mat coeff = princomp( mat X )
cx_mat coeff = princomp( cx_mat X )

princomp( mat coeff, mat X )
princomp( cx_mat coeff, cx_mat X )

princomp( mat coeff, mat score, mat X )
princomp( cx_mat coeff, cx_mat score, cx_mat X )

princomp( mat coeff, mat score, vec latent, mat X )
princomp( cx_mat coeff, cx_mat score, vec latent, cx_mat X )

princomp( mat coeff, mat score, vec latent, vec tsquared, mat X )
princomp( cx_mat coeff, cx_mat score, vec latent, cx_vec tsquared, cx_mat X )


normpdf( X )
normpdf( X, M, S )


log_normpdf( X )
log_normpdf( X, M, S )


normcdf( X )
normcdf( X, M, S )


X = mvnrnd( M, C )
X = mvnrnd( M, C, N )

mvnrnd( X, M, C )
mvnrnd( X, M, C, N )


chi2rnd( DF )
chi2rnd( DF_scalar )
chi2rnd( DF_scalar, n_elem )
chi2rnd( DF_scalar, n_rows, n_cols )
chi2rnd( DF_scalar, size(X) )


W = wishrnd( S, df )
W = wishrnd( S, df, D )

wishrnd( W, S, df )
wishrnd( W, S, df, D )


W = iwishrnd( T, df )
W = iwishrnd( T, df, Dinv )

iwishrnd( W, T, df )
iwishrnd( W, T, df, Dinv )


running_stat<type>


running_stat_vec<vec_type>
running_stat_vec<vec_type>(calc_cov)


kmeans( means, data, k, seed_mode, n_iter, print_mode )


gmm_diag
gmm_full




Miscellaneous



constants (pi, inf, eps, ...)


wall_clock


RNG seed setting


output streams


uword, sword


cx_double, cx_float


Examples of Matlab/Octave syntax and conceptually corresponding Armadillo syntax




example program



config.hpp


History of API Additions and Changes


sourceforge